The 3rd International Symposium on Microgenomics 2023

Bacterial Extracellular Vesicles: Spheres of influence within and beyond the gut

### **Simon R Carding**

Food, Microbiome, and Health Research Programme, The Quadram Institute

م Norwich Medical School, UEA, UK



### Cells from all three domains of life produce EVs: Evolutionarily conserved mediators of intercellular communication



2009; Edgar BMC Biol. 2016; Palmer, ASPB, 2019

## BEVs: a *bona fide* bacterial secretion system

- First described in 1960's by Bishop and Work for Gram negative bacteria and 30 years later for Gram positive bacteria
- Naturally shed by Gram negative bacteria during normal growth cycle by:
  - Budding from the outer membrane (OMVs)
  - Explosive lysis outer inner MVs and outer MVs
  - Gram positive bacteria produce cytoplasmic MV



Juodeikis and Carding, 2022

- Genetic basis for regulated production (stress response pathways)
- Selective, non-random, packaging of cytoplasmic and periplasmic contents

mmbr.

# BEVs: It's energetically costly so why bother?

- Garbage disposal
- Re-modelling
- Building fences and self protection
- Export and transport
- Scavenging

Examples of bacterial resistance Binding Bacteriophages Detergents Antimicrobial pepides Detergents Detergen

Juodeikis and Carding, 2022, MMBR

![](_page_3_Figure_8.jpeg)

- Good neighbors, community development and altruism
- Détente and stabilising cooperative relationships with the host

![](_page_4_Picture_0.jpeg)

## Bacteroides thetaiotaomicron (Bt): A Model Human GTT Commensal

Obligate anaerobe, non-endospore forming, motile/ immotile: 6.26 MB genome encoding 4776 proteins, ~90% for binding/import of polysaccharides

Wide environmental distribution: Constituent of multiple biomes inc. animal microbiomes

Represents ~10-25% of all anaerobes in the human colonic microbiota

Normally resident at the mucosal interface in the lower GIT

## **Bacteroides BEVs - Questions of Interest**

- Production
- Distribution
- Function
- Exploitation

# Context

Defining the mechanism and pathways by which gut bacteria communicate with the host to promote health

## How do gut microbes communicate with their host?

![](_page_6_Picture_1.jpeg)

Kamphuis et al. 2017. Scientific Reports

## Bt BEVs: Abundant & naturally produced in the GIT

![](_page_7_Picture_1.jpeg)

Ian Brown

![](_page_7_Figure_3.jpeg)

Bt mono-colonised Germfree mice (caecum)

![](_page_7_Picture_5.jpeg)

R. Stentz, K. Cross

# **BEV isolation & characterisation**

![](_page_8_Figure_1.jpeg)

Stentz, Miquel-Clopés and Carding. 2022. Methods Mol Biol.

### Bt BEVs in vivo enriched in metabolic enzymes

![](_page_9_Figure_1.jpeg)

Olivares et al. 2018. Front. Microbiol.

## Bt BEVS *in vivo* express high levels of BtuG proteins that deliver cobalamin/vit B12 to host cells

![](_page_10_Figure_1.jpeg)

Juodekis et al., 2022

## Bt BEVs access and cross the host GIT

![](_page_11_Picture_1.jpeg)

![](_page_11_Picture_2.jpeg)

**Frontiers** in Microbiology Jones et al., 2020 **Biodistribution** of DiDlabelled Bt **BEVs** Post oral administration to adult SPF mice

*In vivo* Xtreme multimodal optical and x-ray small animal imaging system (Bruker) with a back-illuminated 4MP CCD detector

![](_page_12_Figure_2.jpeg)

![](_page_12_Figure_3.jpeg)

Biology Modasai et al. 2023

## Localisation of DiD-Bt BEVs to the Liver & CNS

#### R hemisphere

![](_page_13_Figure_2.jpeg)

![](_page_13_Figure_3.jpeg)

![](_page_13_Figure_4.jpeg)

![](_page_13_Figure_5.jpeg)

#### Median lobe

![](_page_13_Figure_7.jpeg)

Jones, et al. 2023. In preparation

### A simplistic *in vitro* three cell model of the gut-blood-brain axis

Gut

BBB

CNS

![](_page_14_Figure_1.jpeg)

Biology Modasai et al. 2023

### Plasma of healthy individuals contains BEVs

genes

#### Article

The Origin of Plasma-Derived Bacterial Extracellular Vesicles in Healthy Individuals and Patients with Inflammatory Bowel Disease: A Pilot Study

MDPI

Emily Jones <sup>1</sup>, Régis Stentz <sup>1</sup>, Andrea Telatin <sup>1</sup><sup>(0)</sup>, George M. Savva <sup>1</sup>, Catherine Booth <sup>2</sup>, David Baker <sup>1</sup><sup>(0)</sup>, Steven Rudder <sup>1</sup>, Stella C. Knight <sup>3</sup>, Alistair Noble <sup>3,†</sup><sup>(0)</sup> and Simon R. Carding <sup>1,4,∗</sup><sup>(0)</sup>

![](_page_15_Figure_5.jpeg)

![](_page_15_Figure_6.jpeg)

![](_page_15_Figure_7.jpeg)

![](_page_15_Figure_8.jpeg)

### **Optimising bacterial extracellular DNA isolation from plasma BEVs**

![](_page_16_Figure_1.jpeg)

UC = ultracentrifugation  $(150,000 \times g, 2 \text{ h at } 4^{\circ}\text{C})$ 

SEC = size exclusion chromatography (qEV/35nm series column)

Boil = boiling (100°C for 40 min + centrifugation at 13,000 x g, 30 mins at 4°C

2.9-3.1 ng/ml DNA

### Identifying sources of contaminating DNA (kit-omes)

![](_page_17_Figure_1.jpeg)

- Major source of contamination is post-EV lysis buffers and kits
- Sequence based filtering to remove protocol control reads >20% prevalence
  - ~15,000 Amplicon Sequence Variants
  - 743 ± 586 average reads/sample

![](_page_18_Picture_0.jpeg)

# Mediators and outcome of BEV interactions with immune cells

### A computational workflow to define the BEV-host cell

### Interactome

![](_page_19_Figure_2.jpeg)

TLR Pathway Analysis identifies specific PRRs as a BEV target in human macrophages

![](_page_20_Figure_1.jpeg)

Macrophages: TLR2, TLR4 & NOD2 are candidates for mediating interactions with BEV proteins

TLR2mediated activation of THP-1 Blue\* cells by Bt BEVs

\* NF-κB-inducible secreted alkaline phosphatase (SEAP) reporter gene

![](_page_21_Figure_2.jpeg)

### Bt BEVs stimulate production of immunoregulatory IL-10 from mDCs of healthy individuals but not those of IBD patients

![](_page_22_Figure_1.jpeg)

![](_page_23_Figure_0.jpeg)

Stentz et al., Cell Rep. 2014; Stentz et al. 2018, Biochem. Trans.; Jones et al., 2020. Front. Micro; Durant et al., 2020, Microbiome; Jones et al., 2021, Genes

# TRANSLATION

### **Native BEVs**

- Limiting/controlling inflammation IBD (Fonseca et al., 2022, Front. Micro.)
- Cancer therapy
- Adjuvant boosting natural immunity Ageing

### **Engineered BEVs**

- Delivery of biologics
  - BEV-Hu.KGF2 for oral treatment of acute colitis (Carvalho et al., 2019, JEV)
- Mucosal vaccines
  - BEV-*Yersina pestis* (pneumonic plague) oral/i.n. vaccine (Carvalho et al., 2019 Clin. Exp. Immunol.)
  - BEV-IAV (influenza virus) i.n. vaccine (Carvalho et al., 20219, JEV)
  - BEV-SARS-CoV-2 i.n. vaccine

![](_page_25_Figure_0.jpeg)

![](_page_26_Picture_0.jpeg)

### I.N. delivered native BEVs-mediate immune potentiation in the Upper and Lower RT

![](_page_26_Picture_2.jpeg)

![](_page_26_Picture_3.jpeg)

T cells

Nasal Associated Lymphoid Tissue

![](_page_26_Picture_5.jpeg)

![](_page_26_Picture_6.jpeg)

![](_page_26_Picture_7.jpeg)

Journal of Extracellular Biology Carvalho et al., 2019

Rapid (<24h) acquisition of native Bt BEVs by pulmonary-associated DCs and trafficking to cervical and mesenteric lymph nodes (CLN and MLN) after intranasal administration

> JOURNAL of Extracellular Biology

![](_page_27_Figure_1.jpeg)

Carvalho et al., 2019

Mucosal vaccines and technology Miquel-Clopes, A., et al., 2019. 196:205-214.

# Bioengineered Bt BEVs for mucosal delivery of vaccines for respiratory pathogens

![](_page_28_Picture_3.jpeg)

Use of bioengineered human commensal gut bacteria-derived microvesicles for mucosal plague vaccine delivery and immunization Carvalho AL., et al. 2019. 196:287-304.

> Clinical & Experimental Immunology The Journal of Translational Immunology

Bioengineering human gut commensal bacteria derived outer membrane vesicles for the delivery of biologics to the gastrointestinal and respiratory tract Carvalho AL., et al. 2019. 8:1632100.

Influenza

![](_page_28_Picture_7.jpeg)

### A multivalent Bt BEV SARS-CoV-2 mucosal vaccine

![](_page_29_Figure_1.jpeg)

Rokas Juodeikis, Dave Beal, Mark Smales, Martin Warren,

## Summary: Revaluating the Biological Role(s) of BEVs

Findings to date challenge established orthodoxies concerning mechanisms of symbiosis in the GI-tract

Roles for bacteria-generated microvesicles and BEVs in:

- Nutrition (e.g., phytate and vitamin metabolism)
- Inter-kingdom communication
- Host cell physiology adaptation & immune homeostasis
- Ecology of the intestinal microbiota
- Susceptibility vs. resistance to infection (AMR)

# Exploiting BEVs and BEV Technology

### Native BEVs for:

- Biomarkers (Blood, SNF...)
- Immune-potentiation
- Adjuvant therapy
- Boosting natural immunity:
  - Immunocompromised
  - Immunosenescence
  - Infection viral/bacteria
  - Cancer

Engineered BEVs for mucosal & systemic delivery:

- Vaccines human & animal
- Enzymes (replacement therapy)
- Antimicrobials (bacteriocins, anti-virals)
- Cytokines, hormones, neurotransmitters, QS mols
- Anti-tumor agents angiogenesis inhibitors
- Neutralising antibodies (scFv, sdAb)
- Metabolites, anti-metabolites

![](_page_32_Figure_0.jpeg)

![](_page_33_Picture_0.jpeg)